


Intro to Quantum Dynamics 

THE WAVEFUNCTION

Trying to solve the black body problem Max Planck proposed an empirical law

Energy of light had to be quantized. This meant that light with frequency w is emitted
in packets of energy

E =hw

· Planck's constant h = 1 . 05 X 10-
4
J.

sometimes custom to write

h = 2xh

waves
,

Louis deBroglie proposedalparticles,matterandlightareassociatedwithe of the particlehaving
through the Planck constant

Ehr p = h/y

Quantum mechanics tells us that light displays both wave-like and particle like properties.

Waves are different from the classical sense. They are a mathematical construct used to describe

dynamics of quantum object.

Importantly the amplitude has no physical significance .

For the current description ,
we work in IR

For classical : state of particle at = to is given by position and momentum

Se
, 57

5
momentumposition

and =m

Then F = me determines 5 and for all time t



In quantum ,
state of particle is given by its wave function. 4( ,

+)

4:RXIR > C complex valued

(5
,
t)1 4( ,

+)

The probability interpretation
Born's rule

P(t) = 4(t)2 P(t) is the probability density
P(

,
t) is the probability of finding a particle at a given position

The probability of finding a particle at time t in some infitesmal volume is dV around 5

P(c
,
t)dV = 4( ,

t)

Therefore integrating ,

Probability of finding a particle inPr(t)
=,(dVpt) = (dV Plt a region REIR3

In one dimension
, probability of finding a particle in an interval [a ,

b] is

Pa
, bl=/docP(t)=dy( +)

Normalisation

The particle has to be somewhere in R3
,
therefore we get normalised wave function

dVP( ,
t
=

dV plt)A Normalised Wave functioni I
4(x ,t)

suppose we have a non-normalised function ,
Ext)

SdVEt= No

then we normalize it



Normalization

↑(5 ,
+) = I(xt)

Now it is clear that a function is normalizable only if I ,t) 0 sufficiently fast
That is if IEL(R) : Space of square integrable functions

Note : The phase of the wave function is totally immaterial as pertains to the probability density

4a( ,+) = e+(5 ,
t) LEIR

describe the same physical state. In fact 4 ,
t)2 = 4 ,

+)" = P(
,
t) and no other

physical observable depend on C
.

This is only true =L is constant

If we multiply wave function by a spatially varying phase
id(s)

then probability densit remains the same but other observables will change
superposition

By superposition principle , if 41 and 42 solve the schrodinger equation then so is

↑g(5 ,
t) = < 4,(2 ,

+) + 1422 ,
t)V6

, BEC

Additionally if 4 ,
t) and 42 ,

t) are possible states of a system (they are normalizable),
so is P3( ,).

Let

dr it = No, i= 1
,
2

3

Observe

P(a+) = < 4 ,
(52

,
+) + 342(5 ,

+)2
= a 4,

12
,
t)2 + 12 42(52 ,

+)"+ <34, 42 + <34 ,42 (AE ,

A= AA)
= 2 Pz + ppz + C34, 42 + 244 ,42

Hence Py #Pe + P2



If 41 andYe are normalizable then 43 is normalizable

Ps( ,
+) du = )dVa4 , + p42i R

[ (av)d4 + B? 3 x + y = X + y

=(v) au + Bu+ 2 4, Bl,

x - y 20 - X + YP
22(x)(y)

= dv(2 < 4,
(52

,

+) + 2B42( ,
+) 3Es

= 2dN
,

+ 2 pN < 0

showing that 43 is normalizable and so represents a physical state .

Double Split Experiment

4I be the wave function of one of the slits. Similar for Y2.

By superposition principle,

↑, Y2 Yz = 4,
+ 42

We are adding wavefunctions - i. e. probability amplitudes, not probability densities

The probability density with both slits open is
4, (5 ,

+) + 42(t ,
t)"= 4(52 ,t) + 42(5

,

+) + 2Re(42(5 ,+ )4=
(5

,

+))

=> Ps(5t
,
+) = Pf( ,

+) + Py(i
,

+)

In the above relation the cross term [Re (42( ,t )41(5 ,
+) is what causes the interference

pattern .



SCHRÖDINGER EQUATION 

Schrodinger Equation
2

h14(5 ,
t) = -hy(t) + vt) it is

-

· v(
,
t) : potential energy

· plancks constant : h= 1
.
05 X10-34 Is

n = 2xt

The dimensions of his same as angular momentum L=x

[n] = [E] · [i] = J. (E = Energy
Justifying Schrodinger Equation
Assume wave function associated to a particle is a wave. In particular , a De Broglie Wave.

Let w be the frequency ,
wave number Y

,
E be the total energy and momentum I

E = hu P= Y

If particle has mass m and potential v ,
+)

E = F2 + v( ,
t)

2m

-
2then we get

tw
=a k + V (*)

consider a complex harmonic wave

Differentiating 4 pr
we get

YPr. = Agilizc-wth

=iT
= 1834pw

Up .w

substituting into (*) We get

in4p = -t4p . w + V4pw
2m

The last step is to take this expression valid for any plane waves and generalize it.



Conservation of Probability
2

, =(,) = y(t)4(t) + 4( ,+4)
From Schrodinger equation we find (taking complex conjugate

415 ,
)
=i ty(t) + vt) itS

415 ,
)
=i(t) + vt) it

Remark : Potential V
,t) always assumed to be real.

substituting.

=4 +v4)-4 + V4)]
= LV4Vy-
=h(404-4

Define
5(5

,
+) = ih(y( ,t)4(t)4(t)) ProbabilitSo

Note : The divergence of J is

1

. J = 0 . [in(4( ,t)4(t) 44(t)

=it(484 - 484 + 04 : 84 - 04 .24)
(02+ = 1 . 1)+)

Therefore we get

P( ,
t) + 1 .J

,
t=

Maxof Probability



computing probability in a region RCIR ; Pr(t)

Pr(t) = dVP(x ,
t)&

By the above
,

we get
DPr()=(dvp

,
t =fav Fit

=

- (d) .F(
,
t) Gauss' Divergence theorem

2R

We see that the probability that particle lies in R can change only if there is a flow of

probability through the surface &R that bounds R

If J= O on GR ou R has no bounds
, then probability that particle is in region R is

time independent.

If we consider R = 13 = GR =S We should have

dry ,
+)10 as i-Si

# ye[(IR3)

We need

Jas . 5(5 ,+ ) = 0 => 4 = 0

S

Remarks :

1) The operator # is Hamiltonian operator defined as

2#(
,
+) =

2
+ v(

,
t) Hamiltonian Operator

2m

Different choices of Hamiltonian describes different laws of physics
In particular, theSchrodinger equation is only valid for non-relativistic particles, i . e. when

velocity of particles much less than speed of light.



2) General Schrodinger Equation

in(,) = F,),

3) Energy in classical is

Ec= v()

To get energy in quantum ,
do quantization. Take maps

i it

Ex= #

Quantization and Observables

In classical
,
state of a particle is described by position s and momentum I
E

, 57 : observables

F(
,5) is a classic observable

In quantum ,
state of particle is encoded by it's wave function which gives a probability density

P(x,
+) = y(5 ,

+)2

Since we do not have certainty ,
we cannot really speak of a value of the position. In the

probability setting ,
we use the mean value

=/dy(t)2dVytt) Mean value of positionn= Sin
Remark : This is basically the formula for expectation value

Looking at momentum;

(5) = (dV4(
We must determine the It dependence in order to perform the integral .
Remember the trick used to justify Schrodinger Equation

illp .x - wt)
=> 54p.

r(
,
+) = in4p.

2(
,
t)4 p.

w(x
,
+) = Ae



and suppose this holds for any generic wave function

↑p( ,
+) = - in [4(5 ,

t)

where I is the momentum operator. Now

(F) = (avy(t)54(t) -ih)dvy(ty,IR3

Therefore in quantum ,
momentum is not a vector but an operator

We cannot think of momentum o as an observable in the classical sense.

In quantum mechanics
,
observables are operators acting on

wavefunctions

In general
Opp) 8 =0x ,P This procedure is called

quantization
(8) = (dVy(t)8 .Y(t

As we saw above
, operators for momentum and position are

5. y (5 ,
+) = 54(x ,

+) ↑ y(x ,
+) = ihX4(x ,

t)

Examples :

1) Ele , 5) quant F = + v(
,
t)

# 4(5,7) = [-h + v( ,t))4(
2) In classical

, angular momentum is

↳ = x

By quantization,

(e =X quant Ex (in[y( ,
+)



To see this
,
consider first component of angular momentum La . By defn of cross product

(1 = x2pz
-

xz42
* [1 = 2 y - 532

[↑(c) ,+) = (5243 - 592)4(5 ,
7)

= 52 Pj4(5 ,
t) + my924(5,

t)

= 2)-iE4) + )-ihul,
= it20( ,

t) + E
,y(, +)

= xyp( ,
t) + xyy(t ,

t)

= (i4) +it
where we defined

&)(
,
+) = - ihy y(x, +) = -i b4(23

Note : In general operators do NOT commute

In ID : Wavefunction p(x+)

↑ y(x ,
7) = ihy(,

= p(5 ,
+) = xy(x , t)

( - Y)4( ,
+) = p . (x4) + it . (4)

= it (4(t) + it t
= it (xG4 + 4) + insult
= - ihp(s ,

t)

Commutator : [A
,
B] = * B- B * True when acting on functions ofa

[s
, i) = - in

Poisson brackets [x , php.=



Heisenberg Uncertainty Principle
Variance

Basically tells us how much the probability distribution of the observable O is spread around
its mean value.

Variance : (10)= <8 - <831

= (82 - 25(5) + (53)

= (83) - 2((8)) + (832) Linearity of Expectation
= (82) - 2483 + 1832 < 8) is just a number

=> Variance
(10) = (02) - 1533

Heisenberg Uncertainty Principle
There is a limit to the precision with which pairs of physical properties e . g
position and momentum can be simultaneously known.

In other words
,
the more accurately one is measured

,
the less accurately the other

can be known.

For position and momentum
,
this is expressed by

AxApIt

Proof : Dropping the explicit dependence on to

Consider the ID family of wave functions

[j(x) = (p- iss)4(x) seRR

for some reference wavefunction 4(x).

[Ij(x) are bonafide states > they are positive definite

(x
Therefore we get



0 (d (p-is) · y(x) (p-is4l
= (d)-i4(x)-is4(x)) (i4(x)-isl
= (d(84)(64) +A4 +A244 +3

integration
=(dx-4) + xy)4 +547

2

Pfi)
,344 + 1484

4524 - in 84 = Y = Gx4=Y

=(x[4-i

=(dx[-
= (2) - As + 5(x2) =

Make the following assumptions if not
, redefine

(c) = 0 5 < a - (i)

(i) = 0 P (p - (5)

We then get (Ax)= (2) (Ap)= (2)

Hence

0 < (2) - As + 5(x2)

= (Ap) + 5)Ax) -st VseRR

This is only true if right-hand side has one or zero rootsI discriminant non-positive

2 - 4(xx)(Ay) = 0 => AxApIt
Z

⑭



Example : Gaussian Wave Packet

Consider the following normalised guassian state

Y(x) = (a)+
42

Aside = aGoo

=/000-akitt
using polar substitution

C= UcosO
y

=Using

New bounds of integration :

Or[X

0022A

- au
?

T
-

=I Areobian T
=> T (

Hence

(axuk

Important !

Fm(a) = Max x) a

=(m



computing mean values

1) (i) = (dxy(4(=xce
2) (p)=(dxyp4() =-x))z

computing uncertainties

1) (=xd=
-as

2xe92

2) (p) = litxa ·
2

=

-
2
a

-ax

A

-as

2 2
= -aez + Sie2

=-Ex
=

-
we see that

-AxAp=-(i) (p2)-l =



SOLVING SCHRÖDINGER EQUATION

Focusing on1D

Time independent Schrodinger Equation
Assume v(x) to be static

,
i. . e. time independent

inGut)=24(t) + 146t) IDSchrdinger Equationis

time independent potential

separation of Variables

↑(x ,t) = u(x)T(t)

Plugging ansatz in Schrodinger Equation and dividing both sides by
inT'St) = 2u"(x) + v() E

energy constant
T(t) 2m U(x)

=> T'(t) = E(t) T() = T() = ce Et where c = +(0)

Set C = 1
,

we get
P(x , +) = etu(x)

Here uk) is the solution to the time-independent Schrodinger Equation

-2u(x) + V(x)u(x) = El

stationary states have definite energy
E

-
iEt

SE = 0 ↑(x ,t) = u(x)e

S # p(x ,+) = Ep(x ,t)

We can rewrite above as using Hamiltonian operator
# (x)u(x) = En(x)π(x)= + V()

Resembles eigenvalue problem ->> admits solutions for specific values of E

=>
energy quantized and solutions called stationary states



I
Particle on a circle

Focus particle on a compact space : 57

St xnx + 2xR

There is no potential => v(x) = 0

Therefore the time independent equation becomes

-

Eu"(x) = Eu(a)
2m

=> u(x) = 2mEu() uk) =AeiAE =IME
h2

Particle lives on a circle ,
so imposing periodicity condition (boundary condition)

uk + 2xR) = uk) => k =

n ,
ne] quantization condition

Therefore both momentum and Energy can only take discrete forms

in
= n En= n

The collection of energies is called a spectrum of the Hamiltonian

For n= 0
, up(s) is called the ground state

nt 0 : excited states

classical limit

Quantum theory contains classical , so we need a way of recovering classical mechanics .

We need to be able to recover classical expressions and expectations from quantum formulae
.

we achieve this by the limit

A >0 classical limit

h is a universal constant .
So h- 0 does not make sense. Practically this means when taking

the classical limit
,

we assumeh is very small compared to the system scale.

In the circle example ,
these are radius R and mass m and we say
mR2>

The relative energy levels become



En+-En = Cn-n
become very small and energy become small.

Also true if n becomes large.

Continuinganalysis of particle in a circle
,

we need to ensure wave function is correctt o
2xR

(axu() = 2ARA" = 1 (when n = 0

fix A =
1. Then

Y
25R

un(x)
=ene

Particle in a box

consider particle confined in interval sce(o ,
L)

-

Achieve this with infinite potential well
L

v(x) =

0 0(L

S X otherwise => u = 0

we are dealing with a free particle , even though we introduced a potential .

Schrodinger equation splits into two

uki)V(x) = - cu(x) = Eu() 04L

S (o[-cmu"(x) + (v- E)u()] = 0 otherwise

imposing boundary condition

limu(x) = limuk = 0
,

u(d = 0
, u) =

x 0

we need wavefunction to vanish identically at infinite potentials

u(x) = (4()
04xL

otherwise



The general solution is

u
,
(x) = Aeik K = SME > O sce(0 , 2)

By superposition principle (to satisfy boundary Condition n(0) = 0)

u(x) = u
,
(x) + u, (x)

= u(x) =Ae + Be ik

Applying boundary condition,
1) u(d) = 0 => A + B = 0 = B = A

2)u(z) = 0 => A(eik)- jikt) = 2iAsin(k() = 0

=> kL = nA

=> k =

n neN

un() = Asin(nx)

Normalization : We require

Yun()"= 1 => A) sin(nx)ax = =

=> At = 1

=> A=
Hence un()=sin(
Expression for energy is

En= n neI
2m(2

The probability densitiesofthestationarystates
are

a N
below

, we plot graphs



BOUNDED AND BOUNCED PARTICLES

me

As n increases , energ increases the particle is more and more likely to be found at n

separate points where
Y
un(x)2 exhibits maxima.

classical limit is achieved when m/t is very large.

studying potentials that asymptote to a constant value.

lim v(x) = V1)0
x- 10

The following is an example function



Our potential needs to decay sufficiently fast.

Whena is large ,
x-I*

hu"(x) = CE-Vuk),

Particle approximately free at large distances. There are 2 qualitatively different solutions :

1) E-VIC0 : Scattering states

In this case
,

wave functions are characterized by KIER and behave asymptotically
as complex exponentials

u(x)mnei E-VI= x+1
x+ 0

2) E-VIL0 : Bound State

In this case
,

wave functions are characterized by HER and take asymptotically
form of real exponentials

u() ~ Ae + BeMEE-VI = h x- 10
x- XI

Note : Neither

Ys.,
(k) = aei and Yb . s

=A+ Ben

are wave functions , they are both non-normalizable

Bound State

To solve the issue of non-normalization , we solve this by requiring that the full solution
to the Schrodinger equation be

up)=Bentle
a b

S
x- - D

Bound States

For scattering states we need to be more careful
.



Potential Well : Finite well

Consider a finite and symmetric well
v(x) = - Yo

-L(x)L2
Vx S otherwise

The Schrodinger equation becomes

-E E
< -u"(x) = E (E

+ Vo)u(x) -

2x]
En(s) otherwise

-Vo
V> 0

EC-V
,

clearly u"(x) is discontinuous. We want u() to be continuous

Integrating around interval (-42-3
,
42 + 3)

e
4/2 + E

-hdxn"() = ) dx(E-v(lul↳
In the limit E-0 LHS becomes -E/2mu(-4/2) and RHS is finite since it the integral
of a piecewise constant.

=> u(x) = e7

=> continuously once differentiable

We want bound state solutions
, when : EL VI = O

Note : NO non-zero solutions for EC-Vo as wave function vanishes identically
Here u(a) = ael+ bet" inside and outside the well where

u Y = u() = 0
umj

x + -*

and u(x) = aeht ben is not normalizable
.

Hence solution inside well is a sum of complex exponentials
Observation: V is symmetric hence

v(x) = v(x) = if uk) is a solution with energy E , then ufe) is also a

solution with energy E.

Assume no two distinct state possess the same energy



Assuming for each energy E ,
11 single state ,

we get

u(x) =(u)-x)

u(x) = 2u(-x) = 2u)- (-x))(u(x) Y =>2 = 11

Therefore we have 2 classes of solutions

1) even : u(x) = u(-x)

2) odd : u() = - u(-x)

Even Case

Outside well Inside well

· x : u(x) =Ae 2 2ME ·
-

ExtN
2 F2

n(x) = B(os)kx)
· xuk) =Ae v= 2 mE

h2 13 = 2mCE +V

Outside Well wave function has form

u() = T
x) - 2/2

S
x > 2/2

n > 0

Inside well : potential constant ,
E-V() = E-Vo > 0 => solution is complex exponential

Parity forces

u() = Bcos(kx)a]10
The relations of 7 ,

K to E andNo are

E = -h
?

= 21 - VoIm 2m

Imposing continuity
1) continuity of u(a) at c = 4/2

lim u() = Bcos(12) 7 = impose equalitys



climul) =At

Hence Bcos(12) = A 442

2) continuity of u() at c = 4/2

limu'k) = BKcos(KL)limuk)
=-A

s

solving 1) fixing
B =

a

We geta Bcos(Kh/2) iM42 = Bisin)12)
=4/2

=> ncos(1)) = Ksin(i)
=> ktan(() = n n + 13 = 2mvo equation of circeo

dashed lines

solutions are intersections of the 2 plots in (K , n) plane

spectrum SE]
is discrete

limited (not -)



Looking at limit of infinitely deep well V-P
. In order to satisfy

n + 13 = 2m v
- 2
h

take n + 0 in concert. At the same time
,
transcendental equation is satisfied for

k + (2n- 1)π new

Now clearly energy Ed-up diverges to X.

we always have freedom to choose reference from which we measure energies of the system.
In this limit we choose reference to be the floor of the potential - Vo.

Redefine energy
EFETV

. Then

E'
=h=An-

which is the odd part of energy of particle of the box.

Odd case

Works out like the even case. Solution has form

x
-42

u(x) = Stee) -42(x4/2 & since u(-x) = - u(x)
-Ana x > 4/2

Imposing continuity

continuity of ubs) : Bsin(K) = A442

continuity of uk) : kBcos(RE) = -nA7h1
we get equations

tan 21 12 = Im V

We areno longer guaranteed to have atleshe

The first dashed line emeryes from the K = 0
taxis into the first quadran at KL = A.

The circle intersects this line only if
2mVoc => [mVo > #
52 h2 2



Throwing particles at walls

Turn to study scattering states .

We throw particles at a potential wall and see what happens.

u()-deik not integrable(x)+ 0

consider wavefunctions of form

u
,(x) = AseiKKER , Axe

with definite momentum p =K
,
but not admissible since it is not normalizable.

Therefore instead of associating wavefunctions to single particles , we take them to be describing
a continuous beam of particles.

P(x
,t) = 4(x ,

+)2= u
,
() iEtz

= A2

A 2:
Average density of particles

computing probability current

5(x)=itp(xt4t) -4
= A -p

M

which is average density Ax velocity P/m =

average flux of particles

Step potential

j

xV S#----------->
v() = 0

beam of partic les I ,
x

"(x) = (E-v()u(

· x0
,

V = 0

u = Aniki =E
h

Here Anike is the right moving part.



· x70
,
the potential is non-zero but constant -> we get exponentials

u(x) = (eikx +Deikxk= EmE-U) KER for Es U

h
This is too general. ke & for ECV imaginary

· For ESU
,

- ik = y with n=mu-E) > 0

A
Then

u(x) = (e4 + De
not normalizable=> therefore set D=

· For EXU
, Deikwelsresents left moving wave

,
but left moving should only exist

-for so
.

no emitter at so going left
-> D = 0

Therefore the solution looks like

u(x) = (Aeik+ Be ik
ik'x

Ce x>0

Imposing continuity,
1) Continuity ofu() : A + B=

2)Continuity of uk) : i k (A-B) = i K'(

The solutions are

B= A C = 2k A
k + k /

cof with reflection and transmission amplitudes for waves

calculating fluxes,
Jinc= Ah
Trefl = B2t =At

h /
-

Itrans = 1) =At 2



calculating the ratio of fluxes,

reflection coefficient : R =

Fret=
transmission coefficient : T = Jerans=Jinc

Note : R + T= 1

Looking at limiting case

· E sU : In this limit ,
I' s O and (R ,

T) < (1 , 0) ,
so when the particle has barely

enough energy to make it over the well
,
it is simply reflected back with almost 100 %

chance

· E- X : Now K*K and (R ,
T) + 10

,
1)

Energ vows more and more
,
there is less and less probability that the particle is

reflected back.

When ESU , in the region + > O region is

u(x) = ce
1 n= Cm(u-E



Tunnelling
Consider a bump potential.

N
u > 0 v(x) =

V -22(4/2

#--------- E(U S O Otherwise
beam of particles

O
,
x

both right/left movinga only right waves

u() = eik is right moving
Interested in situations OECU

· 4(x , +) = ei(kx -Et) k 0
Our solution has form B

,
C, D

,
FCC

x-4/2 1 = EME > O

u() =(ii x(L2 S n=F eiks x> 42

Imposing continuity :

1) Continuity of u(s) at x = L : likeice eg1
2

nz)2) Continuity of ub) at x = L : ikei _ Beik) = y(DenE-ce eq2
2

Fikt = Cen + Dele eq3scontinua ki = (De - (4) eq4

-> -

>
->

Incoming flux

Jinc() =it [nkfuk-uu]



=it jeipikyLik-eikiki e)

=it ik(7-B-Beik + Bekikey -ik)1-IBR-Betik ei))
= m(1-B

Transmitted flux

Similarly
Jtvans = k F2

M

From continuity equations ,
consider the following sum

k(eq1) - ileq2) + (kcosh(n() + insinh (n2))(egs) Ksinh(n)) + incosh(n()(eq4)

=> F = 2kneik
2kycosh(y() - i (12-3)sinh (n2)

Then the transmission probability reads

T = F= 41342 1

41 cosh (2) + (1- )sinG(x2)
=

1 + (13+42 sinh(2n)
41342

So there is a non-zero chance that the particle makes it through the potential wall
↳ "quantum tunnelling"

Looking at limiting case : When energy of particle is very low energy
=> U-Every large compared to a feature of the system with dimension LES

By dimensional analysis ,

this quantity is /MC2 .

Hence

v - Ext2 => n(x1
m(2

so the regime can be reached in many
very large or t being very small (classways ,eithertaking much largerthan E or in an



Eigenvalue Problem of Sturm-Liouville type

SPECTRAL PROBLEMS

We will look at a more general and formal look at the time-independent Schrodinger equation
-

# u"(x) + v(x)u(x) = Eu(x)
2m

and more generally,
at a special case of equations that this belongs to : Sturm-Liouville problems

The time-independent schrodinger equation is a special case of a second order linear ODE
,

whose

general form is

(2- u)(x) = u"(x) + p(x)u'(x) + q(x)u(x) = xy(x)u(x)

differential operator
u : R , D ne[a , b]

p(x) , q(x) ,
9(x) are complex valued functions,

↑ : the spectral parameter

We need boundary conditions (Divichlet ,
Neumann ,

etch

S u(x) + p(x)u'(x) + q(x)u(x) = Xy(x)u(x) Vx(a , b)
By(u(x) ,

u'(x)) = 0

BR(u(x) ,
u'(x)) = 0

Ba and By are left and right boundary conditions .

The spectral problems for operator L :

Find all the eigenvalues X that satisfy boundary condition

Ba(n , u') = 0 Bp(n , u) = 0

x= a x= b

some terminology :

· XEC : eigenvalue
· u(x) : eigenfunction associated to some eigenvalue x
· [xmYcIeNis the set of all eigenvalues.

Note : Since Sturm-Liouville problem is linear
, if u (a) and via) are 2 solutions,

< u(x) + pu(x) Vx ,Be
is a solution



sturm-Liouville problems (S-C problems

A special case of spectral problem

S
(L . u)(x) = x()(P(x)u'(x)) + Gu(x) = Xu(x) Vocab

Ba(u ,
u) = 0

Sturm-Liouville problem
Bj(u , u) = 0

u(x) is complex
where Ba and B'b satisfy

x = b f(x) > 0 is real valued
Vu

,
veeF [V'()4(x)u() - V(x)P(x)u'()]x

= a

= 0
P(x)

,
Q(x) is real valued

Aside :

· vector inner product (1 ,
2)

· M is hermitian if <V ,
Mr) = <M

+
1

,
>

,
McMat(e)

We need this condition because

I = (ax()v()(u)(=xv((P()u() +q(ul
integration by = Evk)uk)p()](v)v'(x) +Q()u()v()parts

= [v 'G(u()P(x) - v()uk)p()) (axu(x)[ (p()v()) +Q()-()
= [v()u()P(x) - v()uk)p()) (axu(x)[ (p()v()) +Q()-()

·
= [v()u()P(x) - v()uk)p()) (ax(()(2 .v)()u(x)

for 5-1 problem

=> xevk)(n)()=x(2v)(ua) Operator is Hermitiana



Define inner product for complex functions on [a , b]

(v , u)
,

= "axs(x)v()u() Inner productS
Properties

1) (v , 2n , + Buc) = a(v
, n

,
) + p(v , uz) Va , BeC

2) (v , u) = (4 , v)

3)\u ,
u) 0

4) (u , u) = 0 (> u(x) = 0

In this notation

(v
,
L . n) = <L . v

, n) Hermitian

In relation to quantum mechanics
,
TDSE is an S-C problem

-2u"(x) + V(x)u(x) = Eul

e(x)= 1 P(x) =

+q(x) = V()x = E

Verifying that S- L problem satisfies D-D and NN conditions

· D-D :

suppose boundary conditions are Balu, u) = u(a)
, Bp(n , u) = u(b)

D - D => u(a) = 0 and u(b) = 0

=> [v()u()P(x) - v(x)u(x)p(x))0
· N-N :

suppose boundary conditions are Balu, u) = u'(a)
, Bp(n , u) = n'(b)

N-N = u(a) = 0 and u(b) = 0

=> [v()u()P(x) - v(x)u(x)p(x))0



PROPERTIES OF STURM-LIOUVILLE PROBLEM

The wavefunction is

↑ (x ,+) = u()e
- i Fat

5(x) =-ih[4(xt)4(xt)-4t4

=it [()u()-(x)u]
= + i[m'(x)P(x)u(x) - i(x)P(x)u(x)) = j(x)2↳) j(a) - j(b) = 0

if s-boundary
conditions are true, H

Pa,b
=

where

Play = (ax +(4 +)
=

= P(a) - P(b)

Two functions are orthogonal if

(v
, u3 =(xf(x)v(u)-

Recall integral
jo&
*

insncsin(ms) = Sm min

[un()=sin(ne)]ne2
* orthogonal normalized functions

Theorem Reality of the spectrum for Sturm-Liouville problems

The spectrum [xmince of a Sturm-Liouville problems are real XMER ,
me I

Proof :

start with s-1 problem

(2 . u)(x) = Xu(x)

with XEI and u() 0.



Then we compute

x(n , n) 0 => (u ,
L . n) =< . n

, u) = <xu , n) = <n ,Xu) = <u
, n)

=> (x - x)(u , u) = 0 = X(u , u)

=> X - = 0 Since (u , u) 0

=> x = x

=> XER
#

Theorem Orthogonality of eigenfunctions in Sturm-Liouville problems

Let u ,
(x) and u

,
() be eigenfunctions (solutions) of a sturm-Liouville type operators (

associated to different eigenvalues 11 and X2. Then

(u
,, uz) = 0

Proof : Xc(u ,, uz) = (u ,, L . uz)

= ( . u
,, 42)

= X
, (u, uz)

=> (xc - X
, )(u ,, uc) = 0 x

,
+ +2

=> (u
,, uz) = 0

#

Reduction of spectral problems to sturm-Liouville type

Any second order ODE can be brought to s . L problem

Consider general case

u"(x) + p(x)u'(x) + q(x)u(x) = xw(x)u(x)

Multiplying both sides by R(x)

R(x)n"(x) + R(x)p(x)u'(x) + R(x)q(x)u(x) = R(x)xw(x)u(x)

Need to recast it into -L form

(p(x)u'()) + Q()u(x) = P(x)u"()p'()n'() + Q(x)u(x) = Xp(x)u(x)

Therefore we get
R(x) = P(x) and R(x)p(x) = - p(()

-



=> p() = p(a) = pla =exp[d]
Therefore

,
we have

P(x) = exp[(jasp(s)]
Q(x) = -q(x)exp[(jasp(s)]
>(x) = -w() exp[)"asp(s)

Example :

su" (x) - 2xu'() + u(x) = - xxtu(x)

=> u"(x) -Zul) + u=

Coefficients are

p(x) =

-z , q(x) =

+ w() =-

The primitive of pla)

1 p(s)d) = )
,

"

-
2x = - 2loga

Now by substitution

P(x) = x

Q(x) = = - 54

f(x) = - (-x)((x2) = 1

Hence the Sturm-Liouville form of the equation is

- (izh()) - u() =x



Quantum Mechanical interpretation of SC boundary conditions

Consider
↑ (x , t) = u(x)e-it

with the function u(x) satisfying s - L type ODE P(x) = h/2m
(P(x)u'(x)) + Q(x)u(x) = Xy(x)u()

, Q(x) = v(x)SI
From the definition of probability current

5(x ,+) = -it(4(t4(t) -4(tut

substituting wave equ

5(x , t)J(x)=i(uk() - uk)hul

= ((x)P(x)u(x)
- u(x)P(x)u(l

The s-L condition reads

[V'()4(x)u(x) - V(x)P(x)u()] 0

=> j(b) - j(a) = 0

Recall by conservation of probability

P(x ,t+ J(x)=

P(a
,
b)(t) = (axP( +)

Pat = (put) =-(5( = 5 -Jl o



Regular S-L problems

Eigenfunctions of S-L problems have outhogonality relation. We want to know if they can be
used to reconstruct any function in defining interval [a ,

b)

(like Fourier series

In mathematical Jargon
enfunctions form a"Dothesettia mal system"

S-L problems produce complete orthonormal system under following conditions

· a , b are finite

· P(x)
,

Pl()
,
Q(x)

, g(x) are real and continuous in [a ,
b]

· p(x)
,
f(x) are strictly positive in [a , b]

Theorem

V regular s-L problems ,
the following are true

1) The eigenvalues areo many ,
countable

, form an increasing sequence

[XmYmen X1* YEx........

with limiting behaviour

lim xm = *

m=0

2) To each Xm
,
is associated a unique eigenfunction Cup to multiplication by constant)

um(x)

that has exactly m-l zeroes in sce[a
,
b]

3) The set of normalized eigenfunctions is a complete outhonormal system
5um(x)]

men



Power Series Method
HARMONIC OSSCILATOR

Harmonic oscillator has potential

v(x) = mw
2>
2

which gives the quantum harmonic oscillator

hu"(x)+mwu(x) = Eu Quantum Harmonic Oscillatora

Taylor Series and Analytic functions
Let feePR) .

Select do

&= P(x) Taylor expansiona

Definition Analytic function

If for any interval I such that sel,

it Val
,
P(x)= fo(xco converges on

n= 0

=> + is analytic on I

Example :

↳ M

m cos()=↑ e =2 x x
n !

n = 0

Vx(- 00
,

00) = IR

x
n + 1 2n+

m sink)= , m sinh()=(+) !

m cosh() =20 (n) !24



Functions can be analytic on other intervals .

Example
· log(Ital= xe(-1

, 1)
n = 0

m log)-c)=E
· (l +c)=() xef , 1) detz,

Properties : f
, g analytic in an interval IEIR about e

1) any sum of products of and
g are analytic (linear combination) on I

2) if g(x) = 0
, g(I) O ,

I'-I

if f analytic on interval ccotl ,
then

f(x) is analytic in If I about I
g(x)

3) all derivatives of analytic functions are analytic
Ratio test

Theorem Suppose (aj)jeN is a sequence of non-zero terms ,
such that

aj + 1
>Vasj > x

aj

Then /convergea
r1
v -1

Insive v = 1

Finding radius of convergence of power series

Zan = P

Applying ratio test

an+ (x-sco)"
*

= and (x-sco)
an(x -xj)n an



it

convergentamt loc < 1 as n + x

=>(x-x < R

R : radius of convergence

Therefore P(x) converges in interval (x-R ,
so +R)

if any (x-sco) > 071 for all => R = 0

am

Equivalent formulation
Consider a series

Zane
Then

himAn
=Ro

Rivadius of convergence ,

interval (5-R
,
SotR)

if R = x => 1 = ( 00
,

00)
Example

1) f(x) = e =z c ; anta I (m) !x , 0 (l as m -> 0 Va
am (m + 1) !

=> radius of convergence
: IR = ( -0

,
x)

2) fal= i

lim
n+xan =im

==R

Differentiating power series

amam(x am
me
-x)2



Reduction of Harmonic Oscillator

u(x) - cimule = -2Eul
Dimensional Analysis
Note : [E] = [v] = mc

Th
So

[E) = [v] = [mw2i/2) = [m] [w][x]
=> M[w]2 = Mc2

T2

=> [w]=

Further [A) = [EJT = ME ,
we see

- 2

[mw]=

[ME]===
Non-Dimensionalisation

Define

E=mw =ME = E

2 Mw kw

v(z) = u(x(z))

substituting
v" (z) + (3- z2)v(z) = 0 Dimensionless Schrodinger Equation

ForE= 1 : satisfied by Gaussian function

g(z) =e
zy
g = -

zg

(e) = (2) E



For other other other potential solutions ,
see what happens for z -> - (large 2)

In this case a negligible compared to2 all solutions should behave as El
for large z

Therefore define g(z) = e

-z2
= g = zg

n(z) = v(z) = v(z) => g =
-

g + zg
g(z)ez

For large z
, g

:E = 0

substituting into v" + (3-z2)v = 0
=> gz + zg

D Hence in dimensionless equ ,
a neglected

h(z) - 2zh + (3 - 1)h = 0 v" =Eg" and g satisfies the equation

Power Series solution and energy spectrum

strategy : Search for a solution in form of power series about z = 0

n(z) =Zohnz
Consider general ODE

u(z) + p(z)u'(z) + q(z)u(z) =0(x)

We say z = Zo is

· zo is an ordinary point if p(z) and q(z) are analytic at Zo
· singular point if (2-20) p(z) and (2-zog(z) are analytic
·
zo is irregular if none of the above is true

Theorem Cauchy's Theorem

Letzo be an ordinary point of equation (*)

u(z) + p(z)u'(z) + q(z)u(z) = 0

and plz) and q(z) have Taylor series aboutzo with convergence radii Rp and Rq

Then 12 linearly independent solutions to (*) u ; (z) ,
i =1

,
2 with power series expansion

ni(z) = nin(-zo
with radii of convergence min (Rp , Rq) = R = R ;



In
h(z) - 2zh + (3 - 1)h = 0

p(z) = - 2z
, g(z) = -1

,
both have R = R => has a taylor series convergent everywhereabout x = 0

Observe

h(z) = zhnz" => h(z)= h
n= 0

=> n(z) = n(n-1)hnz-2
n=2

substituting
*

In(n-1)hnz"-22nhnz + (c -1)]nz = 0
N

n= 2 n= 1 n = 0

shifting summation index (change of index : m = n -2 = m = n + 2)

2nn-1)nnz= (n + 2) (n+hnt

we get
(2hz + (3 - 1)ho) += [(n+2)(n+ 1)hn+2

+ (a - 2n - 1)hn)z" = 0
n = 1

The above equation must hold for all z we need to independently cancel all coefficients
of zn

This gives
nn+z

= (2n + 1 - 3)hn (x )
(n +1)(n+2)

2 undetermined constantsho
,
he

Note :

Eg (*) has the property it connects. even indexed coefficients to even indexed coefficients
· odd indexed coefficients to odd indexed coefficients

Therefore we have 2 independent solutions.

Further the relation is homogeneous ,
so has form

han = Heln) ho han+ 1
= Ho(n)hz



Therefore
,

1) no t0
,
he= 0 => even solutions

=> n(z) = h)-z)

2) no = 0
,
hetO > odd solutions

=> h(z) = - h)-z)

The radius of convergence is

R = limhmh =imhn =m I,a
=> R = 0

=> h(z) analytic on IR
We have 2 cases :

1) ANEN s .
t VnIN

, hn= 0 => h(z) truncates to a polynomial .

=> v(z) is still normalizable as as asymptotic behaviour is
dominated byez3

ANEN s. t VnIN,hn= 0 => AN s. tCN + 1 = 3=
=> E = hw(N +1)

2) hatO
,
VneNUSOY

For large z
,
behavior of z might interfere with exponential decay

For large u ; n max(
,
3)

htzhn

and this is bad
,
this is same behavior as e- Observe

i yanee = 2



2

n evenye=an =

S ! nodd

From the above 2 Taylor expansions ,
we get recurrence relation

an+2
= zan

E12z2E12
Therefore h(z) = et => v(z)

/ z1 +Be e = e

NOT normalizable

Therefore for v(z) to be normalizable
, Ehnin,

must truncate
,
and we have

En = tw(N + 2)
Now

EN+ -En = tw energy equally placed
The Wavefunctions : the solutions

Important !

aXi A
↑ N = 0 = E = tw

2

degree of h(z) is of degree N= h(z) = no constant

v(z) = hoez2 14 - mws

vola) = (mwah

· N = 1= Eo = Shw/2

degree of h(z) is N =1 => all kn = 0 V n = 2

=> ho = 0 in order to cancel all even terms .

Hence h(z) = hzz ·

Find h
, by normalization

v
=
(z) = h +
zez => n

,
(x) = (4m3"cnorm



· N =2 => Eo = 5hw/2

degree of h(z) is N = 2 => all kn = 0 V nz3

=> h
,

= 0 to cancel odd terms

Hence h(z) = hothzz and he determined by recursion equ above

hz = - 2 ho

So we get wavefunction

~z(z) = holl-2l* nck =(w-2m
· N = 3 => Eo = 7 hw/2

degree of h(z) is N = 3 => all kn = 0 V n24
=> ho = 0 to cancel even terms

Hence h(z) = h
,
z + hsz and he determined by recursion equ above

hj = - 2h
37

So we get wavefunction

vs(z) =hiz1-eu(=-meI I

Example calculations :

1) N = 0 => deg(h(z)) = 0

=> n(z) = ho

Shown that v(z) = h(z)e
**2 => volz) = hoez

2

substituting z =Mw =
·
(x) = hoe-wU

Normalising
08

noklnk)dx=-m
=> no = (mw



2) N = 1= deg(h(z)) = 1 and Un = 0 F nz2

=> no = 0 to cancel even terms

h(z) = h1z
- 22 - 22

shown that v(z) = n(z)e => v
,

(z) = haze
-

MW s

substituting z =Mw = u
,
(x) = h,weh

Normalizing

,() ,
()dx = 1 mucem

= himwo-me ex

hY

(x) =(4mw"4
More generally ,

the polynomial solutions h(z) to the equation
h(z) - 2zh' + (3 - 1)h = 0

are known as Hermite polynomials usually denoted by
Hn(z)

Plot of wavefunctions
· up(x) :



· u
,
(x) :

· u_(x) :

· Uz(x) :



THE METHOD OF FROBENIUS
Consider second-order linear ODE

u(x) + p(x)u'(x) + q(x)u(x) = 0

If functions p(c) and q(a) are NOT analytic at c = so ,
then cannot apply Cauchy's Theorem.

However
, if x =Do is a regular singularity ,

i . e
. (x-scolp(s) and (x-scg(x) are analytic,

tells tthen Ferdinand Georg Frobenius us tha we can find a solution in form

uk) = cna
n+j

This is established by Fuchs Theorem

Theorem Fuchs Theorem

Let so be a regular singular point of the second order linear ODE

u(x) + p(x)u'(x) + q(x)u(x) = 0

Then a solution u(x) always exists and has form

u(x) =2 OER

where o is parameter we fix

Example : Consider the equation
2 in"(x) + x(2x+ 1)u(x) - u(x) = 0 : 2x

-

-> u"(x) + (1 ++x)uk) - +n() = 0

We have

p(x) = 1 + 2-

q(x) = - 1

2x2

so s = O is a regular singular point .

Hence

u(x) = z((x -x)
n + s



Differentiating

· Zin"(x) = 22 Intol (n+ -1) custo

· x(2x+ 1)n'() = z(n+instntinct
n +j

· u(x) =-
shifting summation to match powers of s,

2 In +olcnscut = 22n+-1
n = 0

Now extract n = 0 terms from other 2 so we can clump summations

2n"() = 2010 - 1)<x + 27c(n + 2) (n +-1)

x(2x + 1)u'() = Ocox + z(2(n + 0- 1)( - 1 + (n+o)cn)a+0

n+2
- u() = coxo-2

By substituting into ODE
,

we get

(20+ 1)(0 - 1)x + 2(2(n+ 0- 1)(n+
+ (2n + 20 + 1)(n+ 0- 1) (n)an

+= 0

All coefficients must vanish identically
(20 + 1)(0- 1)6 = 0 indicial equation
2(n+ 0- 1)(n+

- (2n + 20 + 1)(n+ o-1)

To avoid non-trivial solutions

C + 0 ,
(20 + 1)(0 - 1) = 0

=> 0=
- 1/2E 1



The recursion relation is

(n = 1 Cn-1 VneN
n +o+ 1/2

simplifying by iterating

= (n))n

=> In =

10+3/2)(573 + 1) ... .. (0+32+ n -1)

N

The radius of convergence

R = lim (n =im n+

Looking at cases U = -1/2
,

0 = 7
,

· = - 1/2 :

= 1-1)" Co = li
1

. 2...... n

and this gives us an immediate solution

-2 c = coceu
,
(x) = Cox

n = 0

· 8 = 1 :

Cn = (- , ) C
- 2n ,.,,

"

(x3 = 11-2) Co
5/2 · 7/2 ... 2n + 3 1 . 5 . 7 .... (n + 3) x 3 3 1 . 5 . 7 . 9 ... (2n+3)

2

-

N
= 3) - 2) Co
(2n+3) !!

=>In = 3(-2)" co

(2n+3) !!

Double factorial function

(2k - 1) !! = (2k - 1)(2k -3)(2k - 5) .... 1 VKEIN



Hence the second solution has form

un(x) = 3 t
Using Fuch's Theorem

,
we found 2 linearly independent solutions.

Consider any second order linear ODE

u(x) + p(x)u'(x) + q(x)u(x) = 0

with regular singularity at x =x
o

If the roots of 0
,
and

2 of the indicial equation ,
then

· 0-0I , then we have 2 linearly independent solutions
· 0-GENUS0] ,

order roots such that 0, 30 - then there exists a power solution

u
,
(s)) =2In

together with a second solution with the following form

nz(x) = au
, (x)log(x) + 2 in(x - x)n+

where < eR can be determined as a function of TotO and Co +O

Example : Consider the equation
xu"(x) + 2u'(x) + u(x) = 0

=> u() + 2u(x) + tu(x) = 0

· p(x)=
· q(x) = 1

3

Therefore x = 0 is a singular point
To make solving simpler , multiply through by s



·[u" (x) + 2xn'(x) + xu(x) = 0

Applying Fuch's Theorem

sin"(x) = In + Into-llcnscht

n +j

2xu'(x) = 22 In+o)a

cuk)= tot shifting summation it

Isolating n = O terms and combining summations

o (0 + 1)cx* + 2n+In + o + in+-

we get indicial equation
v(u+ 1) = 0

=> Roots U = 0
, 02 = 1

Observe 0 , -02 = 1ENUSO => apply second case
,

we have a logarithmic term.
· 0 = 0 : We get recursion relation

cn =

In + 1(n+2) Vnz0 shifting relation by 1
.

=> n
,
k) =cl

The radius of convergence is

R = lim(n =m(n+ (n=



↑ D = -1 : The recursion relation ill-defined at n=

(n+ 1
= nin+1)

Setting co = 0 and take C as normalization constant reproduces u
,
(a)

,
so not good.

Lets try solution of form (ansatz)

uz(x) = Glog(x)u ,
(x) + vz(x)

where

v(x) = 2 incite
Differentiating

u2(x) = 27u ,
(x) + clog(x)u , (x) + v(x)

n(x) = -

Cu ,
(+ u(x)+u(+ logku() + vl

substituting into differential equation

clogs"
,
(x) + 2xu! (x) + xn

,
(x)) + 2xxu(x) + cu

,
(x)

O + civ, (x) + 2xv](x) + xv
,
(x) = 0

=> civ, (x) + 2xv(x) + xvz(x) + Caxu ! (x) + au
,
(x) = 0

Inserting power series for u
,
andV ,

we get

2>Tunin++C
Recursion relation now splits into an equation for n = 0 and another valid for ns O

.

jj = -26

in + 1
= nin <co)1)"2n + 1 Vn > 0

n ! (n + 1) !



Quantum Particles in 3D

SEPARATION OF VARIABLES: Quantum

The time independent Schrodinger equation in 3D is

En(5) + VIlu) = Euk) TDSE in

We will limit our attention to central potentials

v(si) = v(r) v = &

Angular Momentum
In classical mechanics

, angular momentum is
-T = xxπ

and for circular potentials ,
[ is conserved

,
as

=

1 = Exp + x and j = F = (v(v)

i)= jex(mx + Ex) -Ev(v))0 parallel rectors
and further, for circular potentials,

In classical mechanics
,
conservation of[ is a powerful feature as from this

· direction of [ is fixed => allows us to reduce motion from 3D to 2D since

particle moves in plane determined by
[ . it = 0

· I is fixed -> reduce problem to ID : motion in radial direction.

Angular Momentum
In quantum ,

observables are operators. Hence

E= x
and remember

,
action on wavefunction is

u(s) = mu(s)

↑ u() = - ih(n(t)



computing components of the operator I

[u(s) = - in( st) ult

[zu() = ih(t x ulis

[ u(s) = - it( )l
These relations can be summarized using alternating tensor

3
, 23

= 1 Sijk = -

Ejik = -

Eji = -

Eikj

if abc is an even permutation of 1 ,
2

,3
Eabc = [ if abc is not a permutation of 1

,
2

,3
if abc is an odd permutation of 1

,
2

,3

The

angularmomentumoperatorcanderewritten
a

zijk
Y

summation convention
repeated index

We can also define angular momentum operator as

E = -Px

and X = -EX
Commutation Relations

Components of angular momentum operator do not commute amongst themselves .

Calculating the commutator

[[i
, [j) = [itj - [j[i = iSijk[n

Note : The fact that [ti , [j] + 0 means particle cannot have a well-defined angular momentum
in all three directions simultaneously .

If for example you know angular momentum If ,
then there will be necessarily some uncertainty

in the angular momenturn of the other two·



The same thing happens with position and momentum

[i,j) = itSij
which tells we cannot know with infinite precision s , P2 ; the uncertainty principle

The commutation relation can be proven easily. For example , for i = I
, j:

[[,[c) = ind
,,
Es = inY

,

(5
,
[cull = litRAd sp xG)ul

--i?( ls
=-Go

xs+ (, 222u(x) ~S&) + la2x
, 2x2

=- (Gu) +x+l )
+ >Gu +cu + Glass

= ih) - ih) (x, -x) ul

in [
>
u(5)

The total angular momentum operator

E = [i + [2 + Es

This commutes with all the angular momentum components

[E? [i) = 0 Vied1
,

2
,
33

This means that a quantum system can have a definite total ular momentum with a definiteand
component of the angular momentum in some chosen reference direction , usually Ly



We can prove this using the following identity
[* ? ) = [*, B) + [, B) * V*,

Then we get
[E? [_ ) = [[2 + [2 + Es ,

[
,
1

= (2, [] + 12
, 2) + [23

,
[

,
)

Observe that

· IEE
,

[
, ) = 0 since any object commutes with itself

· IE2
,

[
,
] = [cIIc

,

[
, ] + Itc

,
[SEc = -Ecl ,

[c] - 15 , [cSEc = (A
,
B] = - IB

,
Al

= ih/[zIs + [sIz)

· [ES
,
[

,
) = [sIts ,

[
,
) + Its .

[SIs = in Es ,2/EsTc + EzTs) =

= ih)[s[z + [cIs)
= - [2

,

[
,
]

since Egi2 = -E
1 32

= &123
= 7

.

Hamiltonian Operator

Analyzing commutation relation between Hamiltonian operator and angular momentum operator .

The Hamiltonian operator is

~
central potential

Fu() = )2 + v(r)u

This operator commutes with the angular momentum operator as potential is central

IF
,
[i) = [F

,
Es = 0

To prove this,

observe

[[i,j] = itdijk
[[i , ; ) = it Sijk#1

and then using the identity [*2 B) = FI
,

B) + 1 *, B)*, we can show

[i] = ([i, ) + [[, ] + Iti
, is) = 0



[i. ) = ([i
,
2) + [[i , 2) + [[i

, ps] = 0

These relations are all we need
,
since the Hamiltonian

# = &2 + v()
2m

only depends on E and

Theorem Common eigenfunctions of commuting operators
Two operators commute #) they share the same eigenfunctions

This shows why commutations matter, especially with the Hamiltonian.

In fact ,
we want a solution to the 3D TDSE in terms of the Hamiltonian ,

reads

Fu() = Enli

Henceanysolution is automatically an eigenfunction of the Hamiltonian. But sinceE commutea

E and Is

commutes with F and these commute amongst themselves
,
the solutions we are looking for can be

taken to be simultaneous eigenfunctions of these ] operators

#um,,E() = Eum,E()

&
um,

,
e() = ((( + 1) um, (5)

~angular quantum number[s um,e) = mhumicet

The reason why we chose to parametrize the eigenvalues of as 11 + 1) will be clear in
next section.

The Eigenfunctions

Looking at

Full =( +v())u
Since we are dealing with central potentials : use spherical co-ordinates.



Spherical polar

x = usinOcosd VER
+

Ix = usinOsing Ot[0
, x)

#x = vcs8 d = [0
,
2x) O

Need to convert expressions

[u(s) = - in( st) ult

[zu() = ih(t x ulis

[ us) = - it( )l
in terms of polar co-ordinates (v ,

0 , 9) .
To do so ,

we apply chain rule

(v ,
0

, 9) =GvGf(v, a) + 202 flv,a+ Ia
2x , 60

The partial derivatives Gr/6x ,
and so can be found by deriving expressions

with respect to $1

(A) 1 =

sinOcosdar trosco usinsida
25)

,

(B) O = SinOsindGr +rossing usinocoa
25)

,

(c) O =

cosOOr-rsino2x
,

Taking combinations

(SA)cosqt (B) sing) sing + (c) coso

=> Gr = sin Pcosa
Gx

,

r , V similaa



The end result is

[= it (co+Oc + sind)
Ez = in(cotsin-cod
[s = -

in
Total Angular momentum operator is

= [ +E + [5 = jsinsing
Abusing notation u(r ,

0
, 9) = u()

Finding eigenfunctions
~ angular quantum

number

[su() = Emuli)

↳ u() = hmu(r
, 0 , a) = it u(r

,
0

,
a)

ad

=> u(r ,
0

, 9) = Q(v ,
deima

Impose u (r
,
0

,
0 + 2x) = u(r , 0

,
a) = mel

Now for E

Eu(v
,
0

, a) = nl(l + 1)u(v ,
0

, a)

= gimsinsinQ(vd + QIv ,
limeT

=> emsinsina(vid-mard) =Metal

Define X = cos0e[-1
,
1)

sinOa = sinOdXd = -sinod = (2010-1) = (x2-1)do do dX dX



sinsin = (x-x- = (x + (x2XdX2

In terms of X and writing
R(r)p(x(0)) = Q(v , 0)

we get

x_, ((x
- 1)(x--mjP(x) = el+ PY

=> (1 -x)p'(x) + elet)P(x)-mp(x) = O Associated Legendre Equationa

When m= O

* ((1 - x2)p'(x)] + 1)l + 1)p(X) = 0 Legendre Equation

Proposition

Let Pe(X) be a solution to Legendre Equation with eigenvalue 1(1 + 1).

Then for any
meI

,
the following the function

Pem(x) = (1 - x2)/YdmPe
solves the associated Legendre equation where [(-xPe(x)) + eletPe(x =

Legendre Equation

Differentiating Legendre equation
q"(x) - 2xp'(x) + 1(e + 1)p(x) = 0 XX [ 1

,
1)

1 - x2 1 - x2

π(x) = - 2x q(x) = 1(e + 1)
1 - x2 1- x2

singularities at x1 = 11



Check

lim (x-x1)π(x))o
X +XI & => XI is a regular singularity
lim(x-xPQ(x) < o

X + XI

Expanding around XI =11> use Frobenius Method

E solution Pet= (x-x OEIR

X = 0 is an ordinary point => use Cauchy Theorem

Expanding around X = O

P(x) = 2 inx
Differentiating

P'(x) = 2 Pnx+

P"(x) = 2n(n-x
Consider

(1 - x2)4"(x) - 2xP"(x) + 1(e + 1)p(x) = 0

substituting

Pn(n-1)+-

shifting index

& Pnn(n-1)x=mm + 2)(my m =n= m

n = 2

n = 2= m = 0

= ZoPn +2(n +2)(n +1)x & n = 0 = m = 0

renamingn,.m



Combining sums
,

we get

2((n+ 2)(n+pntz-(n(nt)-(tillpn)x-

=> recurrence relation

Pn + z

= (n - 1)(n + 1 + 1)pn
(n+2)(n + 1)

Radius of convergence

R=imprimp
= (n +2)(n + 1) 11 = R
n(n+ 1) - l(l + 1)

=> R=

=> R = 1

In order for power series solution to be finite at X = 11 => polynomial must truncate

=> so solution does not blow
up
at X =I

Po and P2 undetermined constants

P
= 0 and

p
= 1 odd coefficients vanish

42 = 1(l + 1)
2

For example , suppose1(1 + 1) =

Py
= 2 . 3 - 1(1 + 1) = 0 = pj

= 0, , 90
= 0

4.3

=> Pe(X) = 1-3x when e(l + 1) = 6

In general , if 1)1+ 1) EN => solution is a polynomial
l = N

OU & => Pe(X) is a polynomial of order X

l = - N- 1



X = cos0 : 0 = 0, => X = 11

quantization le => so polynomial truncates

solution does not blow up at X = 1



solving radial equation
Given differential equation

divR))++ )RI = El

· ve10
,
)

↑ lim R(v) = 0
V -> 0

1) Non-Dimensionalize

(v) = 2
. (g) ="imE)= [me =

In) = LITE)

Fundamental length a

· a = - OmE (a) =

1h2

·

n =

meht [n) = 1

-S = av [s] = 1

· r(s) = R((a)

substituting

adar()) + (2mea + le+ ))r(s) = Im s
2 ~

(t ==
Fan Fa

=> factoring out a and cancelling ,

r())+ ]=
2) Analyze asymptotic behavior

Look at1*
,

we get
O

r()+



In the limit s-x

p(s) - v()0 = Pls~ es/2
S- x

Want want wave function to be normalizable and limR(v) = O
,

so we need function to vanish

=> choose negative exponential

=> p(s) = e
1

Hence
r(s) = f(s)e where f is a polynomial

So we have

-j((f()e)) +- + e(e + 1), )f(s) = -

( +
()

=> je
** (t'(s) - + (c)(2)) + ( y + 1(e + 1))) +(i) =

Y +()

=> tile +e) (t"ble" tile +Athle +He
+ ( -

y + 1(1 + 1)j) +(i) =

-Y +()

=>(t(s) +( + - + (s) + y() + 1 -

y + 1(e + 1)jz) +() = 0

writing in standard form

f (s) + (( - 1)f() + ((j) - 1(e+ 1)) +()

c singularity s= 0

3) Expand in Series

Case 1 : Expand around a regular point
Case 2 : Expand around a regular singular point Frobenius method

Consider ODE : y"(x) + P(x)n'(x) + q(x)u(x) = 0



o is a regular singularity im (x-sP(x)

lim(x-xQ(x

Expanding aroundSueFrobin
T

ER
, not

Observe

=Zom,Smto
m = 0

substituting into

jf"(s) + (2s - 5) +'(s) + [(n - 1)s - 1)e + 1)] + (s) = 0

we get

=hm(mtd)(m + o Mtuhm2(mtosto-hmlmtost
+2(n-1)hmsMtot-lets

On



2D Hydrogen atom






